LLM Cache#
SemanticCache#
- class SemanticCache(name='llmcache', distance_threshold=0.1, ttl=None, vectorizer=None, filterable_fields=None, redis_client=None, redis_url='redis://localhost:6379', connection_kwargs={}, **kwargs)[source]#
Bases:
BaseLLMCache
Semantic Cache for Large Language Models.
Semantic Cache for Large Language Models.
- Parameters:
name (str, optional) – The name of the semantic cache search index. Defaults to “llmcache”.
distance_threshold (float, optional) – Semantic threshold for the cache. Defaults to 0.1.
ttl (Optional[int], optional) – The time-to-live for records cached in Redis. Defaults to None.
vectorizer (Optional[BaseVectorizer], optional) – The vectorizer for the cache. Defaults to HFTextVectorizer.
filterable_fields (Optional[List[Dict[str, Any]]]) – An optional list of RedisVL fields that can be used to customize cache retrieval with filters.
redis_client (Optional[Redis], optional) – A redis client connection instance. Defaults to None.
redis_url (str, optional) – The redis url. Defaults to redis://localhost:6379.
connection_kwargs (Dict[str, Any]) – The connection arguments for the redis client. Defaults to empty {}.
- Raises:
TypeError – If an invalid vectorizer is provided.
TypeError – If the TTL value is not an int.
ValueError – If the threshold is not between 0 and 1.
- check(prompt=None, vector=None, num_results=1, return_fields=None, filter_expression=None)[source]#
Checks the semantic cache for results similar to the specified prompt or vector.
This method searches the cache using vector similarity with either a raw text prompt (converted to a vector) or a provided vector as input. It checks for semantically similar prompts and fetches the cached LLM responses.
- Parameters:
prompt (Optional[str], optional) – The text prompt to search for in the cache.
vector (Optional[List[float]], optional) – The vector representation of the prompt to search for in the cache.
num_results (int, optional) – The number of cached results to return. Defaults to 1.
return_fields (Optional[List[str]], optional) – The fields to include in each returned result. If None, defaults to all available fields in the cached entry.
filter_expression (Optional[FilterExpression]) – Optional filter expression that can be used to filter cache results. Defaults to None and the full cache will be searched.
- Returns:
- A list of dicts containing the requested
return fields for each similar cached response.
- Return type:
List[Dict[str, Any]]
- Raises:
ValueError – If neither a prompt nor a vector is specified.
ValueError – if ‘vector’ has incorrect dimensions.
TypeError – If return_fields is not a list when provided.
response = cache.check( prompt="What is the captial city of France?" )
- delete()[source]#
Clear the semantic cache of all keys and remove the underlying search index.
- Return type:
None
- drop(ids=None, keys=None)[source]#
Manually expire specific entries from the cache by id or specific Redis key.
- Parameters:
ids (Optional[str]) – The document ID or IDs to remove from the cache.
keys (Optional[str]) – The Redis keys to remove from the cache.
- Return type:
None
- hash_input(prompt)#
Hashes the input prompt using SHA256.
- Parameters:
prompt (str) – Input string to be hashed.
- Returns:
Hashed string.
- Return type:
str
- set_threshold(distance_threshold)[source]#
Sets the semantic distance threshold for the cache.
- Parameters:
distance_threshold (float) – The semantic distance threshold for the cache.
- Raises:
ValueError – If the threshold is not between 0 and 1.
- Return type:
None
- set_ttl(ttl=None)#
Set the default TTL, in seconds, for entries in the cache.
- Parameters:
ttl (Optional[int], optional) – The optional time-to-live expiration for the cache, in seconds.
- Raises:
ValueError – If the time-to-live value is not an integer.
- store(prompt, response, vector=None, metadata=None, filters=None)[source]#
Stores the specified key-value pair in the cache along with metadata.
- Parameters:
prompt (str) – The user prompt to cache.
response (str) – The LLM response to cache.
vector (Optional[List[float]], optional) – The prompt vector to cache. Defaults to None, and the prompt vector is generated on demand.
metadata (Optional[Dict[str, Any]], optional) – The optional metadata to cache alongside the prompt and response. Defaults to None.
filters (Optional[Dict[str, Any]]) – The optional tag to assign to the cache entry. Defaults to None.
- Returns:
The Redis key for the entries added to the semantic cache.
- Return type:
str
- Raises:
ValueError – If neither prompt nor vector is specified.
ValueError – if vector has incorrect dimensions.
TypeError – If provided metadata is not a dictionary.
key = cache.store( prompt="What is the captial city of France?", response="Paris", metadata={"city": "Paris", "country": "France"} )
- update(key, **kwargs)[source]#
Update specific fields within an existing cache entry. If no fields are passed, then only the document TTL is refreshed.
- Parameters:
key (str) – the key of the document to update using kwargs.
- Raises:
ValueError if an incorrect mapping is provided as a kwarg. –
TypeError if metadata is provided and not of type dict. –
- Return type:
None
key = cache.store('this is a prompt', 'this is a response') cache.update( key, metadata={"hit_count": 1, "model_name": "Llama-2-7b"} )
- property distance_threshold: float#
The semantic distance threshold for the cache.
- Returns:
The semantic distance threshold.
- Return type:
float
- property index: SearchIndex#
The underlying SearchIndex for the cache.
- Returns:
The search index.
- Return type:
- property ttl: int | None#
The default TTL, in seconds, for entries in the cache.